Reprint from

10th Cologne Workshop On Dope Analysis 7th to 12th June 1992 - Proceedings -

M. Donike
H. Geyer
A. Gotzmann
U. Mareck-Engelke
S. Rauth
(Editors)

Sport und Buch Strauß, Köln, 1993

GOTZMANN, M. DONIKE:

Quantitative Caffeine determination by Direct Injection of Urine In: M. Donike, H. Geyer, A. Gotzmann, U. Mareck-Engelke, S. Rauth (eds.) 10th Cologne Workshop On Dope Analysis 7th to 12th June 1992. Sport und Buch Strauß, Köln, (1993) 281-284

A. Gotzmann and M. Donike

Quantitative Caffeine Determination by Direct Injection of Urine

Institut für Biochemie, Deutsche Sporthochschule Köln, Germany

Direct urine injection

Analytical HPLC conditions:

HPLC:

1090 HEWLETT PACKARD, with six port column switching valve

DAD:

272 nm

precolumn:

'sample cleanup column' ODS-Hypersil (C₁₈) 5µm, 20 mm x 4 mm

(HEWLETT PACKARD, Böblingen, D)

analytical column:LiChroCART'R-cartridge (MERCK, Darmstadt, D):

'LiChrospher' R 100 RP-18, 5µm, 125 mm x 4 mm

solvents:

A = water; B = acetonitrile

The solvents are filtered and degassed through a nylon filter membrane, pore size 0.45 μ m, under vacuum.

flow:

1 ml/min

injection volume: 5 μ l of native urine

gradient:

pre column

 $0.00 \rightarrow 3.50 \text{ min: } 0\% \text{ B}$

 $3.50 \rightarrow 3.51 \text{ min: } 0 \rightarrow 5\% \text{ B}$

3.51 min: column switch

pre column + analytical column

 $3.51 \rightarrow 13.0 \text{ min: } 5 \rightarrow 25\% \text{ B}$

HPLC-UV chromatograms are shown in Figure 1.

Results

Table 1: Statistical evaluation of the reproducibility of the raw data (peak height, peak area) and of the retention times: [A] caffeine standard solution ($c = 20 \mu g/ml$); [B] urine sample 1; [C] urine sample 2.

		n	ž	s	CV [%]
[A]	<pre>peak height: peak area : R.T. (min) :</pre>	6 6 6	21.969 173.500 10.467	±0.220 ±1.200 ±0.011	1.00 0.69 0.11
[B]	<pre>peak height: peak area : R.T. (min) :</pre>	6 6 6	20.745 166.700 10.433	±0.093 ±0.900 ±0.014	0.45 0.54 0.13
[C]	<pre>peak height: peak area : R.T. (min) :</pre>	6 6 6	17.480 139.000 10.452	±0.246 ±2.200 ±0.018	1.41 1.58 0.17

Out of the raw data (standard solution and urine samples) the real caffeine concentration of the urine samples can be calculated (Table 2).

Table 2: Experimental found caffeine concentration of the urine samples [B/C], calculated by the raw data of peak height and peak area.

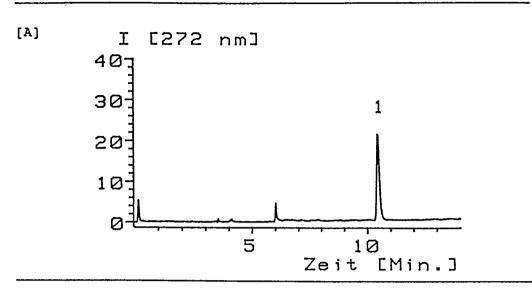
		n	[μg/ml] <u>x</u>	s [µg/ml]	CV [%]
calcu [B]	ılated by: peak height: peak area :	36 36	19.22 18.89	±0.16 ±0.19	0.83 1.01
[C]	peak height: peak area :	36 36	15.92 16.02	±0.25 ±0.26	1.57 1.62

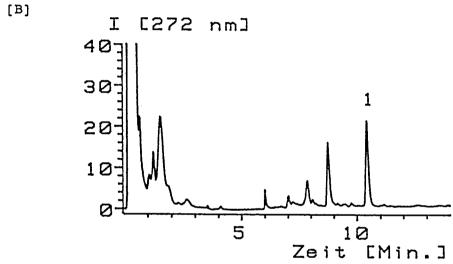
In comparison to the results of the direct urine injection the statistical evaluation of the raw data of a quantitative caffeine determination after extraction with diethylether and ethyltheophylline as internal standard (ISTD) is shown.

Sample preparation

To 5 ml of urine in a glass tube 20 μ g ethyltheophylline (20 μ l of a 1 mg/ml solution in methanol) as internal standard to quantify caffeine are added. After the addition of 0.5 g of a solid buffer (NaHCO₃/K₂CO₃; 2:1, w:w; pH: about 9.5), the samples are shaken mechanically with 7 ml of diethylether (peroxidfree, freshly destilled over CaH₂) for 15 minutes and then centrifuged. The organic layer is transferred to another glass tube and evaporated in vacuum. The dried residues will be desolved in 500 μ l methanol.

Table 3: Evaluation of the raw data of caffeine and the internal standard (ISTD) ethyltheophylline after extraction with an organic solvent.


<u> </u>	caffeine*ISTD ⁻¹				
	n	ž	s	CV[%]	
height: area :		0.972 0.849	±0.045 ±0.028	4.63 3.29	


Conclusion

With the direct urine injection and quantification by means of an external standard it is possible to reduce the coefficient of variation down to 0.83-1.57% by calculating peak heights and to 1.01-1.62% by calculating peak areas. If an extraction with diethyether is performed, the coefficient of variation was 4.63% (peak height) and 3.29% (peak area). In every positive case (12 ppm and higher) it is necessary to prove the peak purity of caffeine in the urine sample.

References:

A.Gotzmann: Nachweis biologisch aktiver Substanzen mit Hilfe der Hochdruckflüssigkeits-Chromatographie und Normbereichsbestimmungen von Corticosteroiden. Dissertation, Deutsche Sporthochschule Köln, 1991.

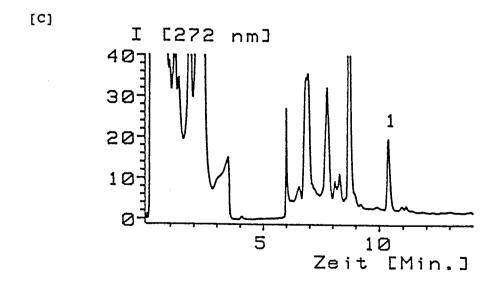


Figure 1: HPLC-UV-chromatograms: [A] caffeine standard in aqueous solution (5 μ l) 20 μ g/ml; [B] urine 1, direct injection (5 μ l) caffeine = 18.9 μ g/ml; [C] urine 2, direct injection (5 μ l) caffeine = 15.9 μ g/ml.