Reprint from

RECENT ADVANCES IN DOPING ANALYSIS (12)

W. Schänzer H. Geyer A. Gotzmann U. Mareck (Editors)

Sport und Buch Strauß, Köln, 2004

M. HEBESTREIT, U. FLENKER, W. SCHÄNZER:

Hardware-considerations for Purification of Steroids by Normal-Phase HPLC for GC-C-IRMS

In: W. Schänzer, H. Geyer, A. Gotzmann, U. Mareck (eds.) Recent advances in doping analysis (12). Sport und Buch Strauß, Köln (2004) 323-327

M. Hebestreit, U. Flenker, W. Schänzer

Hardware-considerations for Purification of Steroids by Normal-

Phase HPLC for GC-C-IRMS

Institute of Biochemistry, German Sport University Cologne, Germany

Introduction

HPLC is a common technique for purification of steroids for Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC-C-IRMS). As there is a 13 C/ 12 C-discrimination from the beginning to the end of HPLC-peaks [1], it is mandatory to collect the whole peak and to avoid any significant losses. Steroid-extracts from different matrices can contain significant amounts of further lipids. Due to their strong interaction with reversed-phase material, these might contaminate the column more or less irreversibly. The availability of an alternative cleanup-method therefore is regarded as useful. The objective was to develop a cleanup based on Normal-Phase HPLC (NP-HPLC) for selected steroids.

Experiment 1

Two different HPLC columns from Macherey-Nagel were tested under similar conditions:

Column A: EC 250/4.6 Nucleosil 100-5 NH₂

Column B: EC 250/4 Nucleosil 100-5 N(CH₃)₂

Injection-volume: 50 μl

Analytes: Dehydroepiandrosterone (DHEA), Epiandrosterone (EpiA),

Etiocholanolone (Etio), Epitestosterone (EpiT); 100 ng/μl each

Detection: UV/200 nm

Gradient: isocratic 96% n-Hexane / 4% 2-Propanol (IPA) until analytes are

eluted; then 50 % n-Hexane / 50 % IPA (column-washing)

Flow: 2 ml/min (*Column A*); 1 ml/min (*Column B*)

Recoveries of the different standards were determined by GC-MS after collection of fractions mentioned in fig. 1-2 (three times for each standard)

323

Fig. 1: Fraction collection of EpiA (1), DHEA (2), Etio (3) and EpiT (4) with *column A* ((NH₂)-Propyl-column)

Fig. 2: Fraction collection of EpiA (1), DHEA (2), Etio (3) and EpiT (4) with column B ((CH₃)₂N-Propyl-column)

Fig. 3: Recoveries of keto-steroids after fraction-collection with 2 different NP-columns

Results of experiment 1

Under equivalent conditions (50°C; 4% Isopropanol / 96% n-Hexane), the -order of elution for both columns is very similar: 1. EpiA + DHEA (contemporaneous), 2. Etio, 3. EpiT. The much lower UV-absorption of EpiT on *column A* (fig. 1) than on *column B* (fig. 2) indicates, that at least for this compound, *column A* is not suitable. Recoveries after fraction-collection and GC-MS (fig. 3) indicate, that also for the other keto-steroids, recoveries are worse on the Aminopropyl-column despite the much larger fraction size for *column A* than for *column B*. Also fraction-limits are hard to define for *column A*: Ghost peaks occur in fraction 1; every keto-steroid is detectable in significant amounts in fraction 3 sometimes in fraction 4. Using the Dimethylaminopropyl-column, none of these problems could be observed: No ghost peaks in fraction 1, every keto-steroid only detectable in the intended fraction.

Experiment 1a

As the objective was to develop a method for GC-C-IRMS, the $\delta^{13}C_{PDB}$ -values of the standards and the collected fractions from *column A* were measured underivatized vs. 5α -Androstane-3 β -ol as a reference standard by GC-C-IRMS.

	mean $\Delta\delta$ ¹³ C vs. ref. std. [‰]			
	DHEA	Etio	EpiA	EpiT
standards without HPLC	-0,2	0,1	0,4	4,1
standards after HPLC	-0,2	0,3	0,5	5,4

Tab. 1: $\Delta \delta^{13}C_{PDB}$ -values vs. reference std.

Results of experiment 1a

Tab. 1 shows, that under given conditions a significant difference in the $\delta^{13}C_{PDB}$ vs. reference std. before and after HPLC with *column A* can be observed for EpiT. This difference is about 1,3 % which means, that ^{13}C -enrichment can be observed after HPLC. Other steroids don't show this effect.

Experiment 2

To explain the results of experiment 1 on *column A*, 5% n-butyl-amine was added to the different solvents as surrogate. Retention times of the steroids were measured. The respective fraction was collected and measured by GC-MS after silylation with pure MSTFA.

Results of experiment 2

HPLC-retention-times for every compound decreased dramatically. In addition to the TMS-derivatives, four more compounds with m/z = 415 (twice) and m/z = 417 (twice) as molecule ions could be identified by GC-MS.

Fig. 4: Imine-formation exemplified for EpiT

Conclusions

Although very large fractions were collected on *column A*, recoveries for the tested steroids were unacceptable low (Experiment 1). The $\delta^{13}C_{PDB}$ -values are not constant at least for EpiT (Experiment 1a). Experiment 2 results in four derivatives with an additional molecular weight of 55 g/mol which is the mass of n-Butylamine (73g/mol) minus water. In fig. 4 a plausible explanation is shown exemplified for EpiT as most affected analyte. A chemical reaction like the formation of imines (better known as Schiff bases) on the NH₂-Propyl-material during HPLC explains losses, ghost peaks and $^{13}C/^{12}C$ -discrimination for EpiT on *column A*. Fig. 4 also indicates, why EpiT is the most affected analyte: The 3-keto-4-ene-structure facilitates the nucleophilic attack of the primary amine.

Acceptable results were obtained with *column B*: Tertiary amines ($(CH_3)_2N$ -Propyl) can not react with keto-groups. Small fractions are promising for cleanup.

References

[1] Flenker, U.; Horning, S.; Nolteernsting, E.; Geyer, H.; Schänzer W.: *Measurement of* 13 C/ 12 C-*Ratios to confirm Misuse of endogenous Steroids*. In: Schänzer et al. (Eds.) Proceedings of the 16th Cologne Workshop on Dope Analysis, Sport & Buch Strauß, Köln. Recent Advances in Doping Analysis (6), 1999; pp. 243-256