
Carsten von Kuk, Ulrich Flenker, Ute Güntner, Frank Hülsemann, Wilhelm Schänzer

Influence of changes in diet on the dynamics of 13C/12C-ratio in selected urinary steroids. Part I: Study design, 13C/12C-ratio of applied foodstuffs and effect on anthropometrical data

Institute of Biochemistry, German Sports University Cologne

1. **Introduction**

Ingested food provides the subunits for all body compounds such as carbohydrate, fat and protein, thereby also determining carbon isotope ratios of steroids[1], expressed in terms of δ^{13}C in per mille (‰) against a standard VPDB:

$$\delta^{13}C = \left[\frac{r_{\text{sample}}}{r_{\text{VPDB}}} - 1 \right] \times 1000$$

Well known are differing carbon isotope ratios of endogenous steroids in people of diverse continents or changes in fossil tooth enamel [2] which can be attributed to differing nutrition. The motivation of the study was to examine effects of altered nutritional content in 13C on 13C/12C-ratios of endogenous steroids. Resulting data was analyzed to answer two complex problems:

1. As every metabolic steps incorporates a fractionation, there could be different kinetics in incorporating 12C versus 13C into endogenous steroids classified as precursors or as potential steroids of abuse. This could lead to positive IRMS-results.

2. From the velocity and onset of changes in steroid $\delta^{13}C_{\text{VPDB}}$‰ -values we might conclude on size and kinetics of the steroid pool and their precursors as well as components that serve as a resource for de-novo-biosynthesis.

Abbreviations: BMI: Body-Mass-Index, CAM: Crassulacean-Acid-Metabolism, EA: elemental analysis, PEP: Phosphoenolpyruvate, RuBisCo: Ribulose-1,5-bisphosphatcarboxylase
2. Study design: Diet habits, protocol and assumptions

Ingested food serves as the precursor for steroid biosynthesis, assuming that the steroid precursor pool in the body is appropriately small and enough time is allowed [1]. To investigate this effect, seven healthy young male and female persons, including two vegetarians, collected urine samples for two weeks as the basis for obtaining baseline reference values. These persons lived then for a period of four weeks on a 13C-enriched diet before returning to a diet with a 13C/12C ratios regarded typical for western Europe. The normal diet consisted mainly of C$_3$-plant-origin and the 13C-enriched diet consisted of more than 80% of C$_4$-plants with no cholesterol allowed, thus limiting steroid biosynthesis to de-novo-biosynthesis. Two average characteristics of participating test persons ensured a fast turnover of a comparatively small precursor pool, namely a low weight to height ratio (68,5 kg/179 cm resulting in a BMI of 20,9) and a fast metabolic rate of 2850 kcal/day (including 700 kcal/person x day for sport activities). Nutrition and anthropometric data were registered and interpreted daily (Table 1), as reduction of adipose tissue, loss of weight or altered body composition was not desired. Degraded body compounds could serve as components for de-novo steroid biosynthesis.

Table 1: food and weight protocol for each test person

<table>
<thead>
<tr>
<th>date/time</th>
<th>nutrition (exact declaration [g], composition: fast food, preparation, % fat)</th>
<th>drinks [ml]</th>
<th>training/action</th>
<th>illness</th>
<th>weight/% body fat</th>
</tr>
</thead>
</table>

3. C$_4$-plants and CAM-plants compared to C$_3$-plants: δ^{13}CVPDB and metabolism

Less transpiration and no photorespiration gives C$_4$-plant-metabolism an advantage in special climatic conditions. As a consequence of a high CO$_2$-affinity of C$_4$-plants PEP-Carboxylase - compared to C$_3$-plants carbon-assimilating enzyme RuBisCo - less fractionation is evident and 13C/12C-ratios resemble values of air [3, 4](Table 2).

Table 2: distribution and δ^{13}CVPDB of plants

<table>
<thead>
<tr>
<th></th>
<th>Distribution</th>
<th>δ^{13}CVPDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_3$-plants</td>
<td>dominant in cool climate</td>
<td>-27 %o</td>
</tr>
<tr>
<td>C$_4$-plants</td>
<td>evolution in warm/arrid climate</td>
<td>-13 %o</td>
</tr>
<tr>
<td>CAM-plants</td>
<td>extremely dry environments</td>
<td>-13 %o - -27 %o</td>
</tr>
</tbody>
</table>

The carbon dioxide fixation proceeds in two steps. There is spatial separation between mesophyll and bundlesheath cells in C4-plants and temporal separation between night and day in CAM-plants. The first step (Figure 1) involves fixation into oxaloacetic acid, the second step supplies the fixed carbon dioxide via RuBisCo to the Calvin cycle, adding it to Ribulose-1,5-bisphosphate and generating two molecules of phosphoglycerate [4].

![Chemical structure](image)

Figure 1: fixation of carbon dioxide into oxalacetate

4. Results

4.1. δ^{13}CVPDB of food used in the 13C-depleted part of the study (4 weeks)

13C/12C-analysis of 100 food products with C-IRMS restricted the food content that could be used in the 4-week-diet to millet, corn, sugar cane, amaranth, pineapple and their products (Table 3). Favoured for the diet were those ingredients with a δ^{13}CVPDB of -10 up to -13, highlighted in the table are those products that contain additional C3-ingredients and have a lower δ^{13}CVPDB. Whole meals were also analysed and consist of 80% or more of C4-origin. Of special interest is the egg substitute which was not dispensable to make food more edible, δ^{13}CVPDB of meat if the cattle is fed from corn and δ^{13}CVPDB of tuna, which feeds on phytoplankton with a high 13C-content. Tuna was incorporated in small amounts into the diet, but meat with desired 13C/12C-ratios could not be bought in any quantity.
4.2. Relation in nutrients and effect on anthropometric data

The food choosing protocol was interpreted using a computer assisted analysis for relationships with the various nutrients: during the 4-week-diet the carbohydrate content was higher and less fat and protein was consumed. While this looked like an ideal diet (Figure 2, Table 4), after 2 weeks, half the volunteers felt sick or minor infections were observed. The protein content and quality as well as the limited vitamin and mineral intake could be responsible for these observations [5].
Table 4: mean macronutrient content in different phases of the study

<table>
<thead>
<tr>
<th></th>
<th>carbohydrate</th>
<th>fat</th>
<th>protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>50 %</td>
<td>30 – 37 %</td>
<td>14 %</td>
</tr>
<tr>
<td>C4-diet</td>
<td>60 – 65 %</td>
<td>25 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Figure 2: Relation in nutrients during the three phases of the study

Total maximum weight loss during the 13C-depleted diet was attributed to a negative caloric sum of 6000 kcal/person equivalent to nearly 1 kg of fat tissue (Figure 3, Figure 4).

Regarding the total mean energy intake of 120400 kcal/person in 7 weeks the negative energy balance and weight loss can be neglected. The high overall energy expenditure up to 4000 kcal/person ensures that ingested food will serve as the resource for steroid biosynthesis. The day by day energy balance is positive if intake is higher than calculated expenditure and vice versa. Day by day energy expenditure is cumulated to the energy expenditure sumcount.

Model assumptions regarding energy uptake and expenditure calculations and resultant sumcount for every test individual (not shown) as well as means of test persons coincide well with the anthropometric data body weight and % body fat (Figure 3, Figure 4). Thus mathematical calculations and adoptions of models for energy uptake, expenditure, daily requirements of persons [5] and the adoption and transfer of food protocol concerning amount and quality of food seem to be sufficiently exact. Since weight and body fat correlate for the mean values of the volunteers as well as for individual changes (Figure 4), body weight loss can be attributed to diminution of fat tissue.
Figure 3: Effect on anthropometric data: energy

Figure 4: Anthropometric data: weight and body fat
5. Literature

