Flaminia Garribba, Monica Mazzarino, Francesca Rossi, Francesco Botrè

# Recovery of polar and non polar substances from the ultrafiltrate fraction of the EPO aliquot

Laboratorio Antidoping, Federazione Medico-Sportiva Italiana, Roma, Italy

### INTRODUCTION

The procedure used in doping control for the detection of recombinant human erythropoietin (rhuEPO) is based on the urinary analysis of the EPO isoforms by isoelectric focusing, double blotting and chemiluminiscent detection. This method requires a large volume of urine (20 ml), to be concentrated by ultrafiltration through a membrane with a nominal weight cut off of 30,000 Da. In the case of samples requiring a confirmation analysis, with multiple replicates, the volume of urine could be a limiting factor; for this reason the goal of this study was to verify whether the ultrafiltrate fraction produced at the first stages of the pretreatment of urine samples for EPO analysis can be used for the analysis of low molecular weight drugs (anabolic agents, diuretics, stimulants, narcotics and beta blockers). The recovery of the different substances in the ultrafiltrate fraction was evaluated on spiked and real urines, analysed according to the ISO 17025 screening procedures of the laboratory of Rome.

### **EXPERIMENTAL SECTION**

## Isolation of ultrafiltrate fraction

To 20 ml of spiked urine 400  $\mu$ l of protease inhibitor ("Complete") and 2 ml of tris-(hydroxymthyl)-aminomethane hydrochloride (Tris-HCl) 3.75 M were added; the sample was then centrifugated for 10 min, filtrated by Steriflip and the filtrate fraction transferred to a Centricon plus 20 and centrifuged for 20 minutes.

#### Anabolic agents (steroids and beta-agonists) and beta-blockers

Two 3 ml aliquots of the filtrate fraction and two aliquots of 3 ml of the same spiked sample but without filtration were analysed using the following procedure: to 3 ml of urine 50  $\mu$ l of internal standard (17 $\alpha$ -methyltestosterone), 1 ml of 0.2 M phosphate buffer pH 7.4 and 30  $\mu$ l of beta-glucuronidase from E. coli were added and hydrolysis was performed for 1 h at 50 °C. The buffered solution was alkalinised with 1 ml of 0.1 M potassium carbonate solution to pH 8-9 and the anabolic agents were extracted with 10ml of tert-butylmethyl ether on a mechanical shaker for 5 minutes. After centrifugation, the etheral layer was transferred and evaporated to dryness under vacuum; the residue was derivatized by 50  $\mu$ l of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA):NH<sub>4</sub>I:Dithioerythreitol (1000:2:4 v/w/w).

### **Diuretics**

Two aliquots of 3 ml of the filtrate fraction and two aliquots of 3 ml of the same spiked sample but without filtration were analysed using the following procedure: to 3 ml of urine 50  $\mu$ l of internal standard (indomethacine/mefruside), 800  $\mu$ l of 4 M carbonate/bicarbonate buffer solution to pH 10 and the basic drugs were extracted with 6ml of a mixture of chloroform:isopropanol:tert-butylmethyl ether (80:10:10) on a mechanical shaker for 5 minutes. After centrifugation, the etheral layer was transferred and evaporated to dryness under vacuum; the residue was dissolved in 100  $\mu$ l of formate/formic acid buffer 5 M and the acid agents were extracted with 6ml of a mixture of chloroform:isopropanol: tert-butylmethyl ether (80:10:10) on a mechanical shaker for 5 minutes. After centrated with 6ml of a mixture of chloroform:isopropanol: tert-butylmethyl ether (80:10:10) on a mechanical shaker for 5 minutes at agents were extracted with 6ml of a mixture of chloroform:isopropanol: tert-butylmethyl ether (80:10:10) on a mechanical shaker for 5 minutes. After centrifugation, the etheral layer was transferred and evaporated to dryness under vacuum; the residue was dissolved in 100  $\mu$ l of 5 minutes. After centrifugation, the etheral layer was transferred and evaporated to dryness under vacuum; the residue was derivatized by 200  $\mu$ l of a mixture of acetone/iodomethane (9/1) and 50 mg of anhydrous potassium carbonate for ten minutes at 100 °C.

### Stimulants and narcotics

Two aliquots of 2 ml of the filtrate fraction and two aliquots of 2ml of the same spiked sample but without filtration were analysed using the following procedure: to 2 ml of urine 50  $\mu$ l of internal standard (diphenylamine), 0.2 ml of soda and 1 g of sodium chloride were added and stimulants were extracted with 2 ml of tert-butyl methyl ether on a mechanical shaker for 5 minutes. After centrifugation, the etheral layer was transferred and evaporated to dryness under vacuum and diluted in 50  $\mu$ L of tert-butylmethyl ether.

#### **RESULTS AND DISCUSSION**

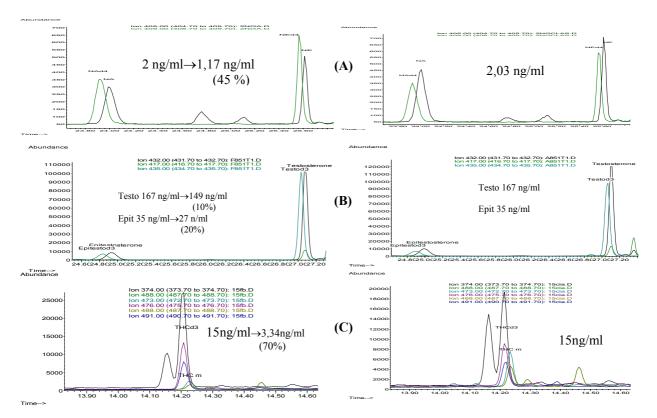

The recovery data for some of the compounds studied are reported in Table 1. All data were normalized to the recovery values obtained by the reference procedure (no ultrafiltration). As it can be seen, the recovery was very low for the most polar substances. Some examples of the quantitative values obtained for threshold substances are given in Figure 1.

TABLE 1 Recovery data for representative anabolic agents, diuretics, beta-blockers, stimulants and narcotics.

| Substances                                                              | Traditional | Filtrate | Substances          | Traditional | Filtrate | Substances                      | Traditional | Filtrate |
|-------------------------------------------------------------------------|-------------|----------|---------------------|-------------|----------|---------------------------------|-------------|----------|
|                                                                         | (%)         | (%)      |                     | (%)         | (%)      |                                 | (%)         | (%)      |
| Steroids                                                                |             |          | Diuretics           |             |          | Stimulants                      |             | -        |
| Bolasterone                                                             | 100         | 73       | Acetazolamide       | 100         | 95       | Bromantan                       | 100         | 49       |
| Boldenone                                                               | 100         | 72       | Amiloride           | 100         | 76       | Ethamivane                      | 100         | 77       |
| Chlormetandienone                                                       | 100         | 59       | Althiazide          | 100         | 53       | Ethylefrine                     | 100         | 80       |
| 4-chloro-4-androsten-3α-<br>ol-17-one                                   | 100         | 55       | Bendroflumethiazide | 100         | 47       | Pholedrine                      | 100         | 74       |
| Danazol m.                                                              | 100         | 5        | Benthiazide         | 100         | 41       | Pemoline                        | 100         | 87       |
| 2α-methyl-5α-androstan-<br>3α-ol-17-one                                 | 100         | 71       | Brinzolamide        | 100         | 95       | Amphetamine                     | 100         | 55       |
| Epioxandrolone                                                          | 100         | 88       | Bumetanide          | 100         | 97       | Fentermine                      | 100         | 62       |
| Epitestosterone                                                         | 100         | 77       | Butizide            | 100         | 38       | Cathine                         | 100         | 20       |
| Epitrenbolone                                                           | 100         | 62       | Canrenone           | 100         | 91       | Niketamide                      | 100         | 79       |
| 9α-fluoro-17,17-dimethyl-<br>18-norandrosta-4,13-<br>diene-11β-ol-3-one | 100         | 53       | Clamide             | 100         | 55       | Ephedrine                       | 100         | 65       |
| 16β-OH-furazabol                                                        | 100         | 41       | Chlorthalidone      | 100         | 71       | Fencamfamine                    | 100         | 60       |
| Epimetendiol                                                            | 100         | 80       | Chlorothiazide      | 100         | 94       | MDMA                            | 100         | 85       |
| $6\beta$ -OH-metandienone                                               | 100         | 85       | Dichlorphenamide    | 100         | 92       | Fenetilline                     | 100         | 80       |
| 17α-methyl-5α-<br>androstene-3α,17β-diolo                               | 100         | 67       | Dorzolamide         | 100         | 96       | Pentazocine                     | 100         | 68       |
| 17α-methyl-5β-<br>androstene-3α,17β-diolo                               | 100         | 78       | Fenquinizone        | 100         | 94       | Pipradol                        | 100         | 94       |
| Mibolerone                                                              | 100         | 75       | Furosemide          | 100         | 94       | Caffeine                        | 100         | 88       |
| Norandrosterone                                                         | 100         | 79       | Hydrochlorthiazide  | 100         | 88       | Pentetrazol                     | 100         | 65       |
| 17α-ethyl-5β-estrane-<br>3α,17β-diolo                                   | 100         | 70       | Indapamide          | 100         | 89       | Methafetamine                   | 100         | 38       |
| Testosterone                                                            | 100         | 95       | Methylchlorthiazide | 100         | 56       | Narcotics                       |             |          |
| 3'-OHstanozolol                                                         | 100         | 85       | Piretanide          | 100         | 96       | Morphine                        | 100         | 69       |
| Beta2-agonists                                                          |             |          | Probenecid          | 100         | 94       | d,l-11-nor-9-<br>carboxy-D9-THC | 100         | 33       |
| Salbutamol                                                              | 100         | 90       | Torasemide          | 100         | 87       | Methylphenidate                 | 100         | 98       |
| Bambuterol                                                              | 100         | 82       | Triamterene         | 100         | 88       | Oxycodone                       | 100         | 46       |
| Terbutaline                                                             | 100         | 60       | Xipamide            | 100         | 81       | Oxymorfone                      | 100         | 30       |
| Salmeterol                                                              | 100         | 70       | Beta-blockers       |             |          |                                 |             |          |
| Fenoterol                                                               | 100         | 88       | Acebutolol          | 100         | 69       |                                 |             |          |
| Procaterol                                                              | 100         | 55       | Alprenolol          | 100         | 67       |                                 |             |          |
| Zeranol                                                                 | 100         | 68       | Atenolol            | 100         | 68       |                                 |             |          |
| Clenbuterol                                                             | 100         | 95       | Betaxolol           | 100         | 69       |                                 |             |          |
| Antioestrogens                                                          |             |          | Bisoprolol          | 100         | 77       |                                 |             |          |
| Anastrozol                                                              | 100         | 90       | Carteolol           | 100         | 51       |                                 |             |          |
| Formestane                                                              | 100         | 70       | Carvedilol          | 100         | 32       |                                 |             |          |
| Exemestane                                                              | 100         | 65       | Celiprolol          | 100         | 77       |                                 |             |          |
|                                                                         |             |          |                     |             |          |                                 |             |          |

#### Conclusions

- Our results show that the concentration of some substances, and specifically those of the more polar compounds, decreased significantly following the ultrafiltration process.
- Our findings also suggest that the ultrafiltration fraction can be used, without the risk of false negative, only for the screening analysis of diuretics, some stimulants and beta-blockers.
- Finally, the data here presented suggest that the ultrafiltration fraction should not be used for confirmation of threshold substances (primarily norandrosterone, d,l-11-nor-9-carbossi-D9-THC and ephedrine).



## Ultrafiltrate fraction

## Whole urine

**Figure 1.** Quantitation of threshold substances: comparison between the data obtained on the whole urine and on the EPO ultrafiltrate fraction. Urine spiked with 2 ng of norandrosterone/ml and 2 ng of noretiocholanolone/ml (**A**); routine sample, with an elevated T/E ratio (**B**); urine spiked with 15 ng of d,l-11-nor-9-carboxy-D9-THC /ml (**C**).