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Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) has 

demonstrated great potential to detect endogenous steroid abuse in athletes [1].  Limitations 

exist, however, with our understanding and use of endogenous reference compounds (or 

ERC’s) in carbon isotope ratio (δ13C) analysis.  Interpretation of GC-C-IRMS results relies on 

the δ13C equation (1) described by Harmon Craig [2] that is now calculated relative to the 

NBS-19 standard [3] via secondary CO2 and/or alkane standards.  Despite the fact that NBS-

19 is not a physiological standard it is fit for the purpose of expressing the very small 

differences in steroid 13C content (1‰ ≈ ∆13C/12C[0.0012]) that form the distinction between 

endogenous and synthetic origins.  The application of δ13C analysis to doping control 

measures 13C depletion relative to the natural 13C content. 

 

There is a need for doping control laboratories to appropriately determine 13C depletion in 

vivo.  One approach is to first consider the mathematics behind the δ13C equation.  Mathews 

[4] has proposed transformation to an amount of substance fraction thereby converting the δ-

unit to the ratio of 13C/12C in the sample (R, Equation 2).  R may then be converted to the 

atom fraction of 13C abundance (F, Equation 3).  Expressing the 13C abundance as F still 

produces a number that is large compared to the difference in depletion measured among 

samples with GC-C-IRMS.  Therefore, a δ-equivalent expressing 13C depletion (D, Equation 

4) may be used by subtracting the natural 13C abundance (F0) from the measured abundance 

F.  Natural abundance F0 will vary among individuals based upon dietary 13C differences and 

may be different among genders and ethnic groups.  Since F0 is an inter-individual variable, 

the determination of F0 for each measurement allows the definition of 13C depletion below 

natural abundance to be established. 
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     δ13CVPDB(‰) = [R/Rstd – 1] x 1000   (1) 

R = (δ13CVPDB / 1000 + 1)Rstd  (2) 

F = 13C/(13C+ 12C)    (3) 

D = F – F0     (4) 

There are two methods by which to establish F0 values:  

• Reference δ13C intervals assessing variables such as diet, gender and ethnicity. 

• Determining the δ13C value of an ERC. 

 

Preliminary reference δ13C intervals have been provided by our laboratory [5].  That work 

reported significant (p < 0.0001) differences in the δ13C values obtained for etiocholanolone 

(Et; 5β-androstane-3α-ol-17-one), androsterone (A; 5α-androstane-3α-ol-17-one) and 11-

ketoetiocholanolone (11keto-Et; 5β-androstane-3α-ol-11,17-dione) from Kenya, China, 

Australia and New Zealand.  Upper reference intervals for Et and A were determined at -

25.8‰ and           -25.1‰ respectively.  While these δ13C profiling investigations involving 

urine samples collected from a further 10 countries are continuing, the latter method of δ13C 

ERC determination for each sample analysed by GC-C-IRMS would have obvious advantages 

for laboratories without access to suitable reference intervals.  Considering an ERC is a 

biochemical marker representing the isotopic signature of an athlete, the question is: which 

compound is most appropriate? 

 

Like androgen metabolites, ERC’s are derived from cholesterol.  However in contrast to the 

anabolic nature of androgen biosynthesis, the corticosteroid pathway that produces ERC’s is 

catabolic.  Inactivation of steroid molecules generally occurs in the liver via oxido-reductive 

reactions.  To render steroid molecules even more water-soluble, the majority of urinary 

steroid hormones are conjugated as their glucuronide form.  The conversion of cholesterol to 

corticosteroids involves a complex series of reactions where a number of translocations of 

substrate must be made.  First, to form pregnenolone (pregn-5-ene-3β-ol-20-one), cholesterol 

must pass into the mitochondria of adrenocortical cells before side-chain cleavage can occur 

by means of the desmolase reaction involving C20,22-lyase as well as the 20α- and 22-

hydroxylases [6].  This process is activated by adrenocorticotropic hormone (ACTH) secreted 

by the pituitary gland.  Secondly, pregnenolone must pass out of the mitochondria and into 

the endoplasmic reticulum before 3β-hydroxylation with conjugation of the double bond can 
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occur to form progesterone (pregn-4-ene-3,20-dione).  Cholesterol, pregnenolone and 

progesterone are the primary precursors for subsequent ERC biosynthesis. 

 

Many ERC’s have been proposed by laboratories for use in GC-C-IRMS analysis.  The work 

of Becchi et al. [7] has seen many laboratories report the δ13C value of pregnanediol (PD; 5β-

pregnane-3α,20α-diol).  PD is the major catabolic product of progesterone.  It is formed by a 

process beginning with reduction of the C4,5 double bond, primarily by 5β-reductase to form 

the 5β-pregnanedione metabolite, the rate-limiting step allowing 3α-hydroxylation of the 3-

keto group to form 5β-pregnane-3α-ol-20-one.  Finally, 20α-hydroxylation produces PD 

(Figure 1). 

 

 
          Figure 1: Biosynthesis of PD from cholesterol [6] 
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Another possible ERC is 11βOH-androsterone (11βOH-A; 5α-androstane-3α,11β-diol-17-

one).  This compound is produced from the cortisone-cortisol metabolic pathway, itself a 

branch from the production of pregnenolone and progesterone.  Cortisone (pregn-4-ene-

17α,21-diol-3,11,20-trione) and cortisol (pregn-4-ene-11β,17α,21-triol-3,20-dione) are inter-

converted in the endoplasmic reticulum by 11β-hydroxysteroid dehydrogenase (11βOH-

SDH).  Side-chain cleavage is facilitated by C17,20-lyase acting on both cortisone and cortisol 

to produce 11-ketoandrostenedione (androst-4-ene-3,11,17-trione) and 11βOH-

androstenedione (androst-4-ene-11β-ol-3,17-dione) respectively that are also inter-converted 

by 11βOH-SDH.  C5-reduction is the rate-limiting step preceding 3α-hydroxylation of the 

latter intermediate to form 11βOH-A (5α-isomer) or 11βOH-Et (5β-isomer) as shown by 

Figure 2 [6]. 

 

 

 
   Figure 2: Biosynthesis of 11keto-Et, 11βOH-A and 11βOH-Et 

O

O

CH2OH

Cortisol

OH
HO

O

O

CH2OH

Cortisone

OH
O

11β-OH SDH

O

O

11-ketoandrostenedione

O

O

O

11β-OH  androstenedione

HO

11β-OH SDH

HO

O

11-ketoetiocholanolone

O

H

HO

O

11β-OH  androsterone

HO

H
HO

O

H

HO

11β-OH etiocholanolone

2.   3α-OH SDH1.   5β-reductase

1.   5β-reductase

2.   3α-OH SDH

1.   5α-reductase

C17,20-lyase

In: W Schänzer, H Geyer, A Gotzmann, U Mareck (eds.) Recent Advances In Doping Analysis (14). Sport und Buch Strauß - Köln 2006



 271

Additionally, our laboratory has demonstrated the use of 11keto-Et as a suitable ERC for δ13C 

analysis [8].  11keto-Et is formed following 5β-reduction and subsequent 3α-hydroxylation of 

11-ketoandrostenedione (Figure 2) [5].  Other reported ERC’s include pregnanetriol (5β-

pregnane-3α,17α,20α-triol) and 16(5α)-androstene-3β-ol [9].  The latter compound has 

demonstrated the potential to effectively identify doping violations in the case of oral 

pregnenolone being co-administered with an endogenous steroid [10].  The present study 

reports a survey of six measured ERC’s: 11keto-Et, 11βOH-Et, 11βOH-A, cholesterol, PD 

and a coelution measurement (11keto-Et + PD).  The reference δ13C intervals of these ERC’s 

and their associated ∆δ13C values relative to Et are used to propose the most effective ERC 

for doping control.  The hypothesis was tested using a testosterone enanthate/placebo 

administration trial. 

 

Experimental 

 

To establish δ13C reference intervals for the ERC measurements, a reference sample set was 

obtained from elite athlete volunteers with informed consent and ethics approval [11] who 

were located in Australia (n=37), New Zealand (n=38) and Malaysia (n=25).  A double-blind 

testosterone enanthate/placebo administration study was also conducted with informed 

consent of 10 healthy male volunteers and ethics approval [12] for the intramuscular injection 

of 250 mg, once a week for six weeks.  Steroid glucuronides were isolated from urine (10 mL) 

using PADII resin (Serva, Germany).  The methanolic extract was evaporated to dryness 

before the addition of phosphate buffer (0.2 M, pH 7) to facilitate enzyme hydrolysis with β-

Glucuronidase from E.Coli K12 (EC 3.1.2.31, Roche, Germany; 50 µL) for 1.5 hours in a 

water bath at 50°C.  The hydrolysate was adjusted to pH 9.8 with K2CO3/KHCO3 buffer (20% 

w/v, 250 µL) before liquid-liquid extraction with diethyl ether (5 mL).  The organic 

supernatant was evaporated to dryness before being reconstituted in acetonitrile/water (1:1, 

100 µL).  The extract was filtered through a 0.45 µm membrane before HPLC purification.  A 

Hewlett-Packard 1090 LC system with automatic injection system coupled to a photodiode 

array detector (Palo Alto, CA, USA) and FOXY200 fraction collector (ISCO, USA) was used.  

The LC column, operated at 40°C, was a LiChroCART® (125 mm x 4 mm x 5 µm) reverse 

phase C18 protected by a LiChroCART® (4 mm x 4 mm x 5 µm) C18 guard column (Merck, 

Germany).  The injection volume was 90 µL.  Gradient elution was performed at a flow rate 
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of 1.04 mL/min from the initial 80% water/20% acetonitrile to 100% acetonitrile at 20 min 

(4% acetonitrile/min) where it was held for 4 min.  The column effluent was monitored at 345 

nm, where β-trenbolone exhibits an absorption maximum.  The fraction collector was 

programmed to dispense column effluent into separate test tubes at 40-second intervals from 

7:40 to 14:20 and from 19:00 to 22:20, based on β-trenbolone having a retention time of 8:30.  

Table I provides the HPLC retention time and subsequent fraction collected for each analyte. 

 
    Table I: HPLC purification protocol 

 

 

 

 

 

 

 

 

 

 

 

 

Fractions 2, 3 and 15 were combined, and separately fractions 7, 8, 9 and 13 were combined 

before being evaporated to dryness.  These two extracts were then reconstituted with ethyl 

acetate (50 µL) before being analysed by GC-C-IRMS using previously reported conditions 

[1].  Comparative statistical analysis was performed using Analyse-it® v1.73 for Microsoft® 

Excel while principal component analysis (PCA) was performed using Pirouette© 3.02 

(Infometrix Inc). 

 

Results and discussion 
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by Figure 3.  Comparative analysis of δ13C values showed PD to have the lowest 13C content 

while displaying a parametric distribution, in relation to the other ERC measurements.  The 

δ13C range for PD (-19.4‰ to -23.4‰) had a mean of -21.4‰.  The 13C depletion trend was 
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confirmed by line plots reconstructed from PCA.  Additionally, sample clustering based on 

country of origin was identified, with Australian and New Zealand samples being generally 
13C depleted in relation to those collected from Malaysia. 

 

 

 

 

 

  

 

 

 

 
Figure 3: Profiling δ13C intervals for ERC measurements (n=100). Dotted lines represent the range of δ13C 

values. Brackets on the left-side of each distribution represent the distribution obtained from parametric 

transformation. 
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  Figure 4: ∆δ13C reference intervals (n=100). Outliers are marked with +. 

 

A testosterone enanthate/placebo administration was used to evaluate the influence of ERC on 

the interpretation of doping violations.  The δ13C value of testosterone hydrolysed from the 

enanthate ester was determined to be -29.9 ± 0.5‰.  Figure 5 shows the initial and week 6 

∆δ13C values of each ERC measurement relative to Et (mean ± range) for the placebo group 

(n=5).  PD is observed to have the lowest mean ∆δ13C value and associated upper range.  The 

distinction between natural (baseline) and altered (week 6) states is made using ∆δ13C values 

illustrated by Figure 6.  ∆δ13C values associated with each of the six ERC measurements 

exceeded 3.0‰, the confirmatory measure of endogenous steroid doping [13].  PD most 

effectively identifies testosterone enanthate administration with ∆δ13C values 4.2‰ higher 

than those observed at baseline and the greatest difference between ∆δ13C ranges. 
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second that PD provides the most conservative ∆δ13C values thereby maintaining legal 

defensibility of the measurement. 

 

 

 

 

 

 

 

 

 

 

 
      Figure 5: ∆δ13C values for placebo group (n=5) at baseline and week 6 

 

 

 

 

 

 

 

 

 

 

 
      Figure 6: ∆δ13C values for testosterone administration group (n=5) at baseline and week 6 
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Table II: Hypothetical doping situation illustrating effect of ERC on ∆δ13C values with respect to Et 

 

 

 

 

 

 

 

 

 

 
*Synthetic copy of an endogenous steroid has been administered with δ13C = -29.9‰ 

  % exogenous indicates proportion of synthetic material excreted in urine as Et 
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