C. Rautenberg¹), J. Grosse¹), D. Thieme², L. Wassill³), D. Ganghofner³), R.K. Mueller¹)

Testosterone Degradation induced by *Rhodococcus eryth.* and *Comamonas test.*

¹⁾ Institute of Doping Analysis and Sports Biochemistry, D-01731 Kreischa, Germany

²⁾ Institute for Legal Medicine, D-80337 Munich, Germany

³⁾Amplex Diagnostics GmbH, D-80337 Munich, Germany

Introduction

Former studies have shown that 1,2-dehydrogenation of steroids is a potential secondary metabolism of bacteria. Boldenone metabolites, presumably resulting from microbial activity, were detected in some routine doping control samples at very low concentration [1,2]. This phenomenon has to be taken into consideration for the evaluation of doping control samples. Boldenone has also been the subject of a heated debate because of ongoing confusion about its endogenous or exogenous origin when detected in one of its forms in faecal or urine samples from cattle [3].

It is a matter of fact that several steroids are substrates for microorganisms [4]. Two bacterial strains which are known to produce Δ^1 -steroid dehydrogenase (DH) were chosen as reference model to investigate the conversion of steroids.

Experimental

Rhodococcus eryth. and *Comamonas test.* cultures grown on agar plate "Mueller-Hinton" were utilised. The experiments were carried out in a blank urine of a male infant spiked with 100 ng/mL of testosterone. Two aliquots of each sample were prepared, one blank without addition and a positive control with addition of bacteria solution. The incubation kinetics at 30°C were monitored for 48 hours. The solution was adjusted to pH 9 (NaHCO₃ / KCO₃) and extracted by n-pentane/ methanol (24:1). After evaporation to dryness the samples were derivatised with a mixture of MSTFA/ ammonium iodide/ n-propanethiole. Metandienone was utilised as internal standard.

All samples were analysed by GC-MS to detect testosterone as well as 4-androstene-3,17dione, 1,4-androstadiene-3,17-dione (boldione) and 1,4-androstadiene-17 β -hydroxy-3-one (boldenone) formed as result of the bacterial induced degradation. The measurement was carried out in SIM modus and focused on the following ions: 432 (testosterone); 430/ 206 (boldenone); 430/ 234 (4-androstene-3,17-dione) and 428 (boldione), 444 (methandienone).

Results

► An almost complete transformation of testosterone was observed in case of *Rhodococcus* eryth. within the incubation period (see figure 1). The process of degradation seems to be initiated by dehydrogenation of the 17β-hydroxy group. The formed androstendienone (4androstene-3,17-dione) then undergoes a Δ^1 -dehydrogenation to boldione (1,4-androstadiene-3,17-dione) (see figure 2).

figure 1: kinetics of testosterone degradation with Rhodococcus eryth. at 30°C

An additional kinetic experiment carried out with 4-androstene-3,17-dione as substrate confirmed this direct transformation.

The Δ^1 -dehydrogenation of testosterone itself occurred in a small extent and the corresponding boldenone was only detected within the first hours of incubation (see figures 1 and 2). The diminished formation of boldenone appears to be caused by limited activity of Δ^1 -dehydrogenase enzyme and by concurrent production of 4-androstene-3,17-dione and boldione, respectively.

Comamonas test. caused a slower degradation process compared to the Rodococcus eryth. yielding the same compounds.

figure 2: proposed pathway of degradation of testosterone in presence of *Rhodococcus eryth*. and *Comamonas test*.

▶ Urine samples with and without *Rhodococcus eryth.* incubation were diluted 100-fold and cultivated at 30°C for 48 hours on an agar plate. Growth of bacterial cells were observed in the *Rhodococcus eryth.* containing sample indicating the survival in an urine medium (see below).

Conclusions

Our objective was the investigation of presumably endogenous production of boldenone from testosterone caused by microorganisms. Both selected bacteria strains *Rhodococcus eryth*. and

Comamonas test. are able to bio-transform testosterone. The mechanism by which testosterone is degraded comprises different enzyme catalysed reactions. The formation of 4-androstene-3,17-dione, boldione and boldenone, respectively, were confirmed. Consequentially, an endogenous formation of 1,2-dehydro-steroids has to be taken into consideration to avoid adverse analytical findings.

Reference

[1] W. Schänzer, H. Geyer, A. Gotzmann, S. Horning, U. Mareck-Engelke, R. Nitschke, E. Nolteernsting, M. Donike: Endogenous production and excretion of boldenone (178-hydroxyandrosta-1,4-dien-3-one), an androgenic anabolic steroid. in: M. Donike, H. Geyer, A. Gotzmann, U. Mareck-Engelke (eds.) Recent advances in doping analysis Sport und Buch Strauß, Köln (1995) 211

[2] D.H.van de Kerkhof, P.M. van der Voort, D. de Boer, R.A.A. Maes: Confirmation of Endogenous Boldenone Production: A Procedure for an in vitro Experiment. in: M. Donike, H. Geyer, A. Gotzmann, U. Mareck-Engelke (eds.) Recent advances in doping analysis Sport und Buch Strauß, Köln (1999) 161

[3] S. Poelmans, K. de Wasch, H. Noppe, N. van Hoof, M.van de Wiele, D. Coutheyn, W. Gillis, P. Vanthemsche, C.R. Janssen, H.F. de Brabander, (2005) *Food Addit. Contam.*, 22, 798-807

[4] G. Kaufmann, H. Thole, R. Kraft, P. Atrat, (1992) Steroid-1-dehydrogenase of Rhodococcus erythropolis, *J.Steroid Biochem Mol Biol.*, 43, 297-301

Acknowledgement

This project was supported by the Federal Institute of Sports Science (Bonn, Germany, 0703032005)