Masato Okano, Mitsuhiko Sato, Yasunori Nishitani, Chinatsu Omori, Ayako Ikekita

Analysis of carbonic anhydrase inhibitors in doping control

Doping Test Group, Anti-doping Center, Mitsubishi Kagaku Bio-Clinical Laboratories, Inc. 3-30-1, Shimura, Itabashi-ku, Tokyo 174-8555, JAPAN

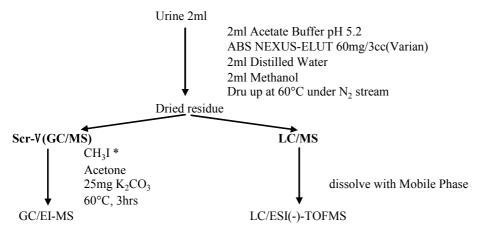
Introduction

Diuretics are abused as a masking agent or for maintaining body weight particularly in weight category sports. Delbeke and Debackere reported that administration of carbonic anhydrase inhibitors, such as acetazolamide, can reduce urinary excretion of basic doping substances, e.g. mephentermine, phentermine etc. due to alteration of metabolic clearance of these drugs through an increase of urinary pH. In this paper, we report the following studies of six carbonic anhydrase inhibitors: acetazolamide(ACZ), methazolamide(MTZ), ethoxzolamide(ETZ), dorzolamide(DRZ), brinzolamide(BRZ) and dichlorphenamide(DCP).

-pH profiles of solid phase extraction(SPE)

-Screening and confirmation of ACZ and MTZ by GC/MS

-LC/MS analysis in negative ESI mode


Our report on LC/MS procedure also refers to Ritalinic acid(RA) and

Carboxy-finasteride(CF), which are not suitable for GC /MS screening.

Experimental

Sample preparation by solid phase extraction was performed using ABS ELUT-NEXUS(60mg, Varian, CA,USA) with acetate buffer at pH 5.2 followed by methanol elution. Sample extracts were analyzed directly for LC/MS, after derivatization with CH_3I for GC/MS screening, and C_2H_5I for GC/MS confirmation(Fig. 1).

All of other reagents were analytical grade. LC/Q-TOF MS instrument was QSTAR XL MS/MS System from Applied Biosystems (Foster City, CA, U.S.A.). GC/MS instrument was Agilent 6890N/5973 GC/MS from Agilent Technologies (Hachioji, Tokyo, Japan). GC/MS and LC/MS parameters are described in Table 1.

*)CH₃CH₂I in case of confirmation of actazolamide and methazolamide

Fig.1 Sample preparation

GC/MS parameters					
Instrument	Agilent 6890N/5973 inert GC/MS				
Column	Ultra-II (Agilent) 0.25mm I.D. X 12.5m 0.33µm				
Oven	Initial 150°C(hold 1.0 min), 300°C(19.5°C/min) hold 7.0min				
Injector	280°C, Split 11:1, 2µl injection				
Transfer line	300°C				
Electron impact	70eV				
Acquisition	Scan mode: m/z 50 to 400				
LC/MS parameters					
Instrument	QSTAR XL MS/MS System (Applied Biosystems)				
Column	Discovery C18 4.0mm x 50mm (SUPELCO)				
Mobile Phase	A: 5mM CH ₃ COONH ₄ (pH5.2 with 1% CH ₃ COOH)				
	B: CH ₃ CN				
Gradient	0-1.5min: A 90% hold				
	1.5min-6.5min: A 90% - A 20%				
	6.5-7.5min: A 20% hold				
	7.5-8.5min: A 20% - A90%				
Run time	11min				
Flow rate	250 μl/min				
Oven temp.	25°C				
Ionization condition	Negative ESI				
Neblizer Gas	2.85L/min				
Aux. Gas	4.80L/min				
Ion spray Temp.	450°C				
Ion spray Voltage	-4,200V				
TOF MS range	m/z140 to 500				

Table 1 GC/MS and LC/MS conditions

Results and Discussion

-pH profiles of solid phase extraction

Recovery of ACZ and MTZ from alkaline urine is relatively low(Fig.2).

This phenomenon was also observed in cases of XAD-2, OASIS HLB and Bond Elut C18

(No data shown). It is necessary to adjust the urinary pH to <7.0 for a successful solid phase extraction of ACZ and MTZ.

-Screening by GC/MS

It is not possible to separate ACZ and MTZ after methylation(Table 2).

As recovery of RA with liquid-liquid extraction is less than 1%, MRPL sample of RA can not be detected by our screening procedure-II. CF cannot be detected by the traditional GC/MS screening procedure(Table 2).

Substance	Substance Screening	Derivatives	t _R (min.)	M^{+}	Fragment Ions		MRPL	LOD
							(ng/ml)	(ng/ml)
Acetazolamide	V	tri-CH ₃	5.3	264	249	108	250	15
Methazolamide	V	di-CH ₃	5.3	264	249	108	250	10
Ethoxzolamide	V	di-CH ₃	6.7	286	179	151	250	25
Dorzolamide	V	tri-CH ₃	8.6	366	152	108	250	20
Brinzolamide	V	tri-CH ₃	9.7	425	152	260	250	10
Dichlorphenamide	V	tetra-CH ₃	7.5	360	253	108	250	30
Mefruside (IS)	V	di-CH ₃	9.1	410	85	325	250	10
Ritalinic acid	Π	N-TFA,O-TMS	7.9	387	180	372	500	4,000
Carboxy-finasteride	-	-	-	_	-	-	250	-

Table 2 Summary of screening analysis of acidic compounds by GC/MS

-Confirmation of ACZ and MTZ by GC/MS

ACZ and MTZ can be distinguished using C₂H₅I instead of CH₃I(Table 3 and Fig.3).

-LC/MS analysis in negative ESI mode

All carbonic anhydrase inhibitors could be detected at MRPL of 250ng/ml directly.

RA and CF could be also detected by same procedure as carbonic anhydrase inhibitors.

As can see Table 4, no matrix influence is observed for spiked sample of these compounds in water matrix, however, it can be observed for that of these compounds in urine matrix. It may be suggested that ion suppression was induced by any suppressants in urine matrix.

Conclusion

Thus, use of LC/MS in negative ion mode for screening of acidic compounds has been found to have some advantages, however, we need to modify a sample clean-up or LC conditions in order to perform more high sensitivity analysis without matrix influences.

Reference

Delbeke FT, Debackere M(1985). J Pharm Biomed Anal 3: 141-148

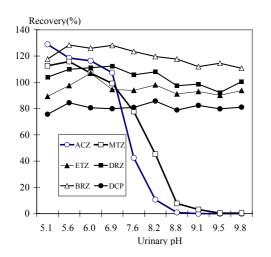


Fig. 2 pH profile of SPE

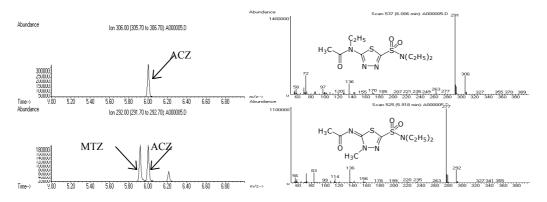


Fig. 3 GC/MS chromatogram and mass spectrum of ACZ and MTZ after ethylation

Substance	Derivatives	t _R (min.)	M^+	Fragme	ent Ions
Acetazolamide	tri-CH ₂ CH ₃	6.0	306	291	136
Methazolamide	di-CH ₂ CH ₃	5.9	292	277	136
Mefruside (IS)	di-CH ₂ CH ₃	9.6	438	85	231

Table 3 Confirmation analysis of ACZ and MTZ by GC/MS

Substance	[M-H]	t _R (min.)	Recovery(%) at 250ng/ml		
			Water matrix	Urine matrix	
Acetazolamide	221	5.6	93.2	72.6	
Methazolamide	235	7.1	90.2	6.0	
Ethoxzolamide	257	9.1	79.2	25.6	
Dorzolamide	323	7.1	93.2	8.2	
Brinzolamide	382	8.5	75.3	6.1	
Dichlorphenamide	303	8.2	107.3	17.6	
Mefruside (IS)	381	9.3	73.7	29.4	
Ritalinic acid	218	6.9	67.7	5.7	
Carboxy-finasteride	401	7.8	-	-	

-: no data (certified standard missing)