Nirut Suknet, Sutheema Nimsoongnern, Prapin Wilairat, Thanit Kusamran and Tongtavuch Anukarahanonta

Preliminary results on the carbon isotope ratios of endogenous steroids in urine collected from Asian countries

National Doping Control Centre, Mahidol University, Bangkok, Thailand

Introduction

Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC/C/IRMS) is a technique to detect and confirm the abuse of endogenous anabolic steroids. The administered steroids are chemically identical to that produced in the body, but the ratio of ¹³C to ¹²C of the synthetic products may be different due to the source of carbon. Carbon isotope ratio is expressed in term of δ^{13} C values ⁽¹⁾, with unit in per mil. Variation in the reference range of the δ^{13} C value of the endogenous steroids is due to the effect of diet ⁽²⁾.

This work reports the variability in the δ^{13} C values of Asian athletes, who took part in the 1st Asian Indoor Games held in Bangkok, Thailand, 12 – 19 November 2005.

Experimental

Sample Preparation

Urine samples (5 ml) were applied onto C-18 cartridge (Sep-Pak[®]), eluted with methanol and then dried. The residues were reconstituted in 1.0 ml buffer (pH 7.0) and free-form steroids in the aliquots extracted with *t*-butyl methyl ether. After addition of the ISTD (5 α -androstan-3 β -ol), the aqueous fractions were hydrolyzed by β -glucuronidase (*E. coli*) for 1 hr at 55°C. After extraction by n-pentane, the aliquots were evaporated to dryness, acetylated by acetic anhydride in the presence of pyridine, re-evaporated to dryness, and reconstituted in cyclohexane (50 µl).

The acetylated aliquots (2 μ l) were injected for GC/C/IRMS analysis and another 2 μ l aliquots were injected for GC/MS analysis in order to identify the steroids.

Instrumentation

GC/C/IRMS analyses were performed on an HP 6890 GC connected to Micromass Isoprime IRMS. The GC was equipped with CP-Sil 24 CB column (Chrompack, 30 m x 0.25 mm i.d. x 0.25 μ m). Helium was the carrier gas at constant flow of 1.5 ml/min. The GC temperature program was initial at 160°C, then 20°C/min to 270°C, 2°C/min to 290°C, 5°C/min to 300°C and held for 8 min. GC/MS analyses were performed on an Agilent 6890N GC / 5973N MSD.

Results and Discussion

The δ^{13} C values of the following endogenous steroids were measured: Etiocholanolone (Etio), Androsterone (Andro), 5 β -androstan-3 α ,17 β -diol (5 β -diol), 5 α -androstan-3 α ,17 β -diol (5 α diol), 11-Ketoetiocholanolone (11-Keto), Pregnandiol (P2) and Pregnantriol (P3). 11ketoetiocholanolone is the endogenous reference compound (ERC) for androsterone and etiocholanolone (one OH-group) and pregnandiol is ERC for 5 β -androstandiol and 5 α androstandiol (two OH-groups). All the δ^{13} C values were corrected for the derivatization using the equation of D.M. Johnes. ⁽³⁾

The results obtained from the 1^{st} Asian Indoor Games are shown in Table 1 and 2 and Figures 1-6.

	Delta value (∞) (n = 189)							
	Etio	Andro	5β-diol	5α-diol	11-Keto	P2	P3	
MEAN	-21.04	-21.44	-22.04	-23.75	-23.23	-22.45	-21.00	
SD	1.09	0.96	1.43	1.02	1.15	1.21	1.14	

Table 1. Summary of results obtained from the 1st Asian Indoor Games

Table 2. Summary of the difference obtained from the 1st Asian Indoor Games

	Difference $(\delta^{13}_{\text{steroid}} - \delta^{13})$	$\delta^{13}_{11-\text{Keto}}$	Difference $(\delta^{13}_{steroid} - \delta^{13}_{P2})$		
	Etio	Andro	5β - diol	5α-diol	
MEAN	1.06	2.19	0.41	-1.30	

From Figure 1 and 2, the mode values of δ^{13} C value for etiocholanolone, androsterone, 11ketoetiocholanolone, 5 β -androstandiol, 5 α -androstandiol and pregnandiol are -21 ‰, -21 ‰, -23 ‰, -22 ‰, -24 ‰ and -22 ‰, respectively. All δ^{13} C value measured (n = 189) are less than -28.0 ‰ ^(2, 4), the cut-off value for a possible positive sample.

The difference of δ^{13} C value between endogenous steroid and ERC (Table 2) is less than 3 delta unit ^(2, 4), the cut-off value for a possible positive sample.

All samples, from the 1st Asian Indoor Games are negative according to the WADA directive⁽⁴⁾, whereby all criteria must be met for a sample to be declared positive.

Conclusions

In the 1st Asian Indoor Games Bangkok 2005, there were 45 participating nations. The data are representative of the δ^{13} C values for athletes from Asia.

References

- 1. Craig, H. Geochimica et Cosmochimica Acta, 12 (1957) p 133-149.
- Cawley, A.; Rogerson, J.; Rahman, K.; Trout, G.; Kazlauskas, R.(ASDTL); Schänzer, W. (Editor), *Recent Advances in Doping Analysis (11) – Proceedings of the 21st Cologne Workshop on Dope Analysis 2003*, Sport und Buch Strauβ, Köln (2004) p 183 – 193.
- Johnes, D.M.; Carter, J.F.; Eglinton, G.; Jumeau, E.J.; Fenwick, C.S.; *Biol. Mass Spec.*, 20 (1991) p 641
- WADA Laboratory Committee, WADA Technical Document TD2004EAAS V. 1.0 (2004).

Figure 1. The distribution of δ^{13} C values of etiocholanolone, androsterone and 11-ketoetiocholanolone.

Figure 2. The distribution of δ^{13} C values of 5 β -androstandiol, 5 α -androstandiol and pregnandiol.