G. Muñoz, J.A. Muñoz-Guerra, F.A. Rodríguez.

# **RRLC**<sup>TM</sup> an alternative method to speed up the LC-MS/MS analysis, without lost of separation efficiency.

Doping Control Laboratory of Madrid, STATE ANTI-DOPING AGENCY (Spain).

#### Introduction

In the late years the progress achieved in particle chemistry which has made possible to produce phases with particle sizes of 1.8  $\mu$ m and even smaller, and the development of liquid chromatography instruments capable of working at pressures higher than 400 bars, have given birth to the new techniques know as UPLC<sup>TM</sup> (Ultra Performance Liquid Chromatography, term introduced by Waters) or RRLC<sup>TM</sup> (Rapid Resolution Liquid Chromatography, term introduced by Agilent). These techniques enhance the efficiency of liquid chromatography analysis and make possible to reduce the column length and finally, to increase the mobile phase flow in order to speed up the analysis without loosing resolution and even increasing the signal to noise ratio for the peaks. [1- 3].

Columns with dimensions of 50 mm x 2.1 and 1.7-1.8  $\mu$ m particle size usually work with optimum flows of 400-600  $\mu$ l/min and generate pressures below 400 bars. [4,5]. A system like an Agilent 1200 HPLC, which is very similar to conventional HPLC instruments, can operate at pressure near to 600 bars, therefore such instruments can be used to enhance the laboratory throughput at a lower cost than the UPLC<sup>TM</sup> systems.

This work describes a standard fast RRLC method enables the analysis of more than 60 compounds (including anabolic steroids, anti-oestrogenics agents,  $\beta$ -agonists,  $\beta$ -blockers and stimulants) in less than 5 minutes. The power resolution of the method allows separation of structural isomers; phenylpropanolamine/catine and ephedrine/pseudoephedrine.

## Experimental

The analyses were carried out with urine samples which were prepared with methanolic solutions of reference material (Table 2). Several aliquots of the spiked urine were extracted by a solid phase extraction procedure. This procedure loads 2 ml of urine throught an OASIS HLB cartridge (30 mg/1ml, Waters). Then the cartridge is washed with 1 ml of bidestilated water. Analites of interest are eluted with 600 µl of methanol:acetonitrile 30:70.

All analyses were performed on an Applied Biosystems API 4000Qtrap combined with Agilent 1200 HPLC system. (The analytical conditions are shown in Table 1.)

| LC conditions          |      |                                            |                       |      |      |            |  |  |  |  |  |  |
|------------------------|------|--------------------------------------------|-----------------------|------|------|------------|--|--|--|--|--|--|
|                        |      | HPLC-MS/MS                                 | Quantification        |      |      |            |  |  |  |  |  |  |
| Column                 |      | Zorbax Eclipse Plus C18 (Agilent)          |                       |      |      |            |  |  |  |  |  |  |
| Dimensions:            |      | 2.1 x 100mm 3.5µm                          | 2.1 x 100mm 1.8µm     |      |      |            |  |  |  |  |  |  |
| Mobile Phase:          |      | A: NH <sub>4</sub> CH <sub>3</sub> COOH 51 | B: Acetonitrile       |      |      |            |  |  |  |  |  |  |
| Colum Temp.            |      | 50°C                                       |                       |      |      |            |  |  |  |  |  |  |
| Flow:                  |      | 300 µl/min                                 | 300 µl/min 600 µl/min |      |      | 600 µl/min |  |  |  |  |  |  |
| Gradient:              |      | Time                                       | Time                  | Time | A(%) | B(%)       |  |  |  |  |  |  |
| A(%)                   | B(%) |                                            |                       |      | , ,  |            |  |  |  |  |  |  |
| 98                     | 2    | 0.00                                       | 0.00                  | 0.00 | 100  | 0          |  |  |  |  |  |  |
| 98                     | 2    | 5.00                                       | 1.25                  | 7.0  | 100  | 0          |  |  |  |  |  |  |
| 60                     | 40   | 5.50                                       | 1.50                  |      |      |            |  |  |  |  |  |  |
| 60                     | 40   | 8.00                                       | 2.00                  |      |      |            |  |  |  |  |  |  |
| 10                     | 90   | 8.25                                       | 2.15                  |      |      |            |  |  |  |  |  |  |
| 10                     | 90   | 12.00                                      | 2.50                  |      |      |            |  |  |  |  |  |  |
| 98                     | 2    | 12.25                                      | 2.75                  |      |      |            |  |  |  |  |  |  |
| 98                     | 2    | 20.00                                      | 5.00                  |      |      |            |  |  |  |  |  |  |
|                        | -    | MS/MS c                                    | onditions             |      |      |            |  |  |  |  |  |  |
| Ionization:            |      | ESI po                                     | ESI positive          |      |      |            |  |  |  |  |  |  |
| Ion Spray Volte        | ige  | 5500                                       | 5500 V.               |      |      |            |  |  |  |  |  |  |
| Source Temp.           |      | 500                                        | 500°C.                |      |      |            |  |  |  |  |  |  |
| Dwell Time & Scan Rate |      | 10 msec // 0                               |                       |      |      |            |  |  |  |  |  |  |
| DP and CE              |      | Specific for                               | Specific for compound |      |      |            |  |  |  |  |  |  |

Table 1. Analytical conditions

## **Results and discussion**

Significantly shorter analysis times were achieved with a simple change of the columns dimensions (length from 100 mm to 50 mm) and the flow rate of mobile phase (from 300  $\mu$ l/min to 600  $\mu$ l/min). With these modifications the total analysis time was decreased by 75% (from 20 minutes to 5 minutes). (See figure 1).

Although the systems pressures generated are elevated (350-370 bars), never exceeds the 600 bars, security threshold value for the Agilent 1200 HPLC system.

The structural isomers can be resolve in less than 3 minutes when a 1.8  $\mu$ m particle size column is used. In these conditions, the chromatografic resolution is below 1.5. However, for screening purpose, the different isomers can be identified. For quantification a slight change in chromatographic conditions enables to resolve both pairs with higher resolution (figure 2 and table 1).

In theory, the use of RRLC technology should increase the signal to noise ratio. However, initially such effect was not observed (table 2). The reason was the slow scan rate programmed (0.55 scan/sec). As consequence, a poor number of scans per peak were measured.

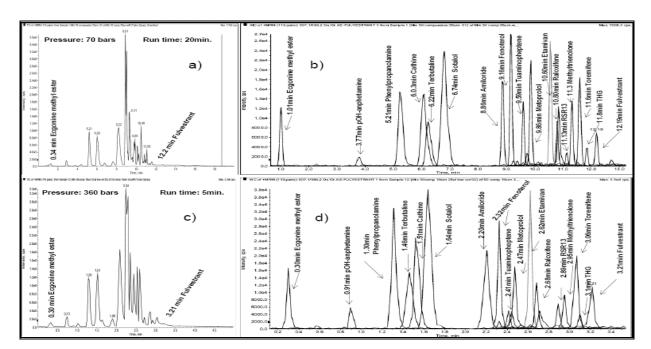



Figure 1. Comparison between conventional HPLC-MS/MS conditions and RRLC-MS/MS conditions. a and c)TIC of a mix containing more than 50 compounds analyzed by conventional HPLC (a) or by RRLC (c); b and d) extracted ion chromatogram of some of the compounds of the mix analyzed by conventional HPLC (b) or by RRLC (d).

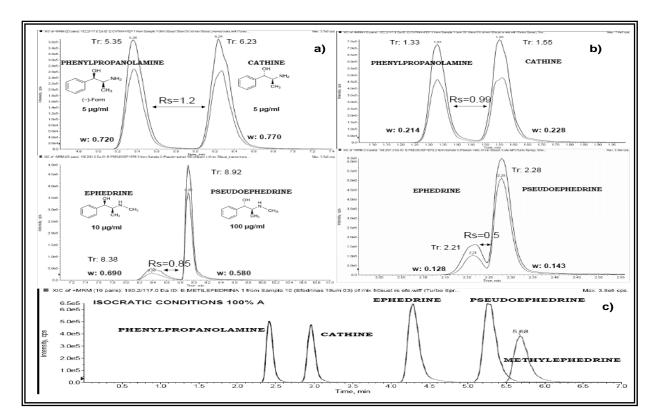



Figure 2. Resolution of isomeric pairs of phenylpropanolamine/ cathine and ephedrine/ pseudoephedrine in conventional HPLC conditions (a); in RRLC condictions (b) and in RRLC conditions slightly modified for quantitation purposes (c).

| Compound              | СС      | Retention Time |       | S/N  |      | Peak width |       | Efficienci\y (N) |       |
|-----------------------|---------|----------------|-------|------|------|------------|-------|------------------|-------|
| Compound              | (ng/ml) | HPLC           | RRLC  | HPLC | RRLC | HPLC       | RRLC  | HPLC             | RRLC  |
| Ecgonine Methyl ester | 500     | 1.01           | 0.300 | 123  | 189  | 0.298      | 0.149 | 544              | 513   |
| pOH anphetamine       | 50      | 3.77           | 0.907 | 142  | 164  | 0.477      | 0.149 | 3370             | 1316  |
| Phenylpropanolamine   | 5000    | 5.21           | 1.30  | 4420 | 4440 | 0.745      | 0.209 | 5034             | 2011  |
| Cathine               | 5000    | 6.03           | 1.51  | 3230 | 4220 | 0.864      | 0.268 | 3153             | 2503  |
| Terbutaline           | 20      | 6.22           | 1.46  | 232  | 262  | 0.566      | 0.298 | 4869             | 2724  |
| Sotalol               | 100     | 6.79           | 1.64  | 823  | 781  | 0.775      | 0.209 | 6030             | 3181  |
| Amiloride             | 60      | 8.86           | 2.20  | 2150 | 927  | 0.328      | 0.238 | 38776            | 11234 |
| Fenoterol             | 100     | 9.16           | 2.32  | 4090 | 2250 | 0.268      | 0.089 | 51926            | 33191 |
| RSR13 (Efaproxiral)   | 2       | 11.1           | 2.89  | 89   | 160  | 0.268      | 0.209 | 76610            | 7225  |
| Methylttrienolone     | 10      | 11.3           | 2.95  | 162  | 80   | 0.298      | 0.298 | 81762            | 12169 |
| Fulvestrant           | 10      | 12.2           | 3.21  | 43   | 54   | 0.238      | 0.089 | 77864            | 40667 |

Table 2. Summary of screening data of selected compounds of the study.

## Conclusion

A fast RRLC method for the simultaneous analysis of more than 60 compounds included in the 2009 Prohibited List has been developed.

The increase in the mobile phase flow rate together with a short increase in the column compartment temperature leads to the implementation of ultrafast RRLC methods that can run multicompound analyses in less than 1 min. [3]. However, the development of these ultrafast methods requires: 1) a split of the mobile phase flow and 2) tools that allows increasing the scan rate (powerful instruments, or powerful software like MRM Schedule) in order to avoid the loss of reproducibility of the chromatographic signal reconstruction.

#### References

[1] Chromatography Online. Swartz, M.E. Ultra Performace Liquid Chromatography (UPLC): An introduction. http://chromatographyonline.findanalytichem.com/lcgc/data/articlestandard// lcgc/242005/164646/article.pdf .

[2] Chromatography Online. Yang, Y; Hodges, C. Assay transfer from HPLC to UPLC for higher analysis throughput. http://chromatographyonline.findanalytichem.com/lcgc/data/ articlestandard/lcgc/242005/164650/ article.pdf

[3] Yoshida T, Majors R, Kumagai H. (2007) High-Speed Analysis using Rapid Resolution Liquid Chromatography on Zorbax column packed 1.8μm particles. *Chrom.* **28**, 81-87.

[4] Touber M.E, van Engelen M.C, Georgakopoulus C, van Rhijn J.A, Nielen M.W.F. (2007). Multi-detection of corticosteroids in sport doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry. *Anal Chim Acta*. **586** 137-146.

[5] Thörgren J.O, Östervall F, Garle M. (2007) A new approach for screening, verifying and confirmation of prohibited doping substances. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds). *Recent Advances in Doping Analysis (15)*, Köln, pp 245-252.