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The fight against the illicit use of doping substances and methods to produce an unfair 

advantage in sport is a race against time. A substance or a method shall be included in the 

Prohibited List also in the case there is medical or other scientific evidence that the substance 

or method has the potential to mask the use of other prohibited substances or prohibited 

methods [1]. In this work, which follows a preliminary study whose results have already been 

presented [2] the potential masking effect of liposomes on the detection of androgenic 

anabolic steroids (AAS) has been investigated. Steroids were chosen as drugs model since 

they still represent the most abused class of performance-enhancing drugs. 

Liposomes are artificial vesicles composed of lipid bilayers. They typically consist of 

phospholipids such as phosphatidylcholine and phosphatidylglycerol and cholesterol, a waxy 

steroid. Since liposomes were first described, in 1961, the attention of scientists in different 

areas of research focused on their ability to encapsulate large amounts of both small 

molecules and proteins. They were also studied as models of cell membranes[3]. 

In pharmaceutics, nano-sized liposomes are mainly utilized as drug delivery systems (DDSs). 

Compounds which in a classical route of administration could lead to severe toxicity (like 

intravenous solution of antitumor drugs) often showed a relevant improvement in their 

therapeutic index when they are administered as liposomal formulations[4].In this case, the 

pharmacokinetics (PK) of the carried drug becomes secondary to that of the carrier. Since 

liposomes can potentially circulate in the blood in a stable form and do not undergo 

glomerular filtration, the drug would be released slowly and for longer time. This leads to a 

decrease of metabolic deactivation and renal excretion, and allows for the use of lower doses 

and less toxic treatments.  

Theoretically, liposomes can mask steroid abuse in doping acting both as “body-oriented” 

masking agents, modulating the PK of the drugs (like diuretics do), or as “lab-oriented”, 

interfering indirectly with the analytical methods (like proteases do).  
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Several potential actions were investigated: 

‐ potential effect of a liposome-based formulation for slow release of anabolic steroids 

(testosterone) on the steroid pharmacokinetic 

‐ post-formation interaction of empty liposomes with steroids, particularly glucuronated 

metabolites (norandrosterone glucuronide (NAG) and noretiocholanolone glucuronide 

(NEG), main urinary metabolites of nandrolone 

‐ effects on the GC-MS quantitative analysis of NAG and NEG 

Finally, several analytical strategies to detect liposome-based formulations in biological fluids 

and/or to minimize their masking effect were considered. 

 

Materials and methods 

Chemicals and reagents 

Testosterone, d3-testosterone, norandrosterone glucuronide (NAG), d3-norandrosterone, 

noretiocholanolone glucuronide (NEG), d4-noretiocholanolone, androsterone were purchased 

from Australian Government – National Measurement Institute (Pimbley, Australia)All 

chemicals were supplied by Carlo Erba (Milano, Italy). β-glucuronidase from E. Coliwas 

purchased from Roche (Monza, Italy). Trizma™-Glybuffer (pH 7.4) was prepared by 

dissolving in 1 L of water 8.5 mg of tris(hydroxymethyl)aminomethane (Trizma™) and  

170 mg of glycine hydrochloride, both purchased from Sigma-Aldrich. The derivatizing agent 

(TMSD) was a mixture of N-methyl-N- trimethylsilyl-trifluoroacetamide 

(MSTFA)/NH4I/Dithioerythritol (1000:2:4:v/w/w). MSTFA was supplied by Alfathech 

(Genova, Italy). Ammonium iodide (NH4I) and dithioerythritol (DTE) were supplied from 

Sigma–Aldrich (Milano, Italy). 

 

Liposomes 

Purebright® and Coatsome® freeze-dried liposomes were purchased from NOF Co., Ltd. 

(Tokyo, Japan). Purebright SL-220, specifically designed for hydrophobic drugs, consist of 

DSPE-PEG. EL-01-A have an anionic net surface charge and are composed of 

dipalmitoylphosphatidylcholine: cholesterol: dipalmitoylphosphatidylglycerol 30:40:30 

µmol/vial, total lipid amount: 61 mg. EL-01-C are cationic and composed of 

dipalmitoylphosphatidylcholine: cholesterol: stearylamine 52:40:8 µmol/vial, total lipid 

amount: 57 mg. EL-01-N are non ionic and composed of dipalmitoylphosphatidylcholine: 

cholesterol: dipalmitoylphosphatidylglycerol, 54:40:6 µmol/vial, total lipid amount: 61 mg. 
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Dialysis experiments 

The dialysis experiments were performed with a biotech cellulose ester membrane (Float-A-

Lyzer®G2 by Spectra/Por®), MWCO: 3.5-5 kDa. Dialysis devices were first rinsed with water 

and then conditioned with Trizma™-Gly buffer.SL-220 liposomes were reconstituted with  

2 mL of testosterone at a concentration of 50 μg/mL in MeOH. The solution was evaporated 

to dryness under nitrogen stream and redissolved with 2 mL of Trizma™-Gly buffer. Then, 

the dialysis membrane was loaded with the liposome containing solution and its body was 

threaded into the floatation ring. Finally, the membrane is left floating vertically in a beaker 

containing 100 ml of Trizma™-Gly buffer. The beaker was placed on a magnetic stirrer in 

order to accelerate testosterone diffusion and homogenize outer concentration. 

Contemporarily, a solution of free testosterone (no liposomes) at a concentration of 50 μg/mL 

in Trizma™-Gly buffer was loaded in a second membrane in the same conditions. Aliquots of 

1 mL were collected from both outer solutions at every hour for 8 hours, and 1 mL of fresh 

Trizma™-Gly buffer was added to the solutions. Finally, all the samples collected were 

analyzed by GC-MS.First, 50 μL of d3-testosterone (10 μg/mL) were added to the samples as 

internal standard and 500 μLcarbonate/bicarbonate buffer (0.8 M, pH 9). Liquid liquid 

extraction (LLE) was performed with 3 mL of n-pentane. Samples were vortexed (5’) and 

centrifuged (5’@ 22°C), then the organic phase, containing testosterone and the internal 

standard, was transferred to another tube. 100 ng of androsterone were added as internal 

standard for derivatization, then samples were evaporated to dryness. The dried extract was 

redissolved with 50 μL of TMSD solution and incubated (30’@ 78°C) for the derivatization. 

Finally, the final extract was transferred to a glass vial, ready for GC-MS analysis. 

 

Effect on steroid recovery 

The effect on steroid recovery was evaluated in Trizma™-Gly buffer. Two mL of buffer were 

spiked with NAG and NEG at 2 different concentrations (50 or 100 ng/mL). Then, different 

volumes of empty liposome solutions (40 and 100 µL of EL-01-A, EL-01-C, or EL-01-N) 

were added to the samples except the “blank” samples.500 µL of phosphate buffer (1 M, pH 

7.4), 50 µL of β-glucuronidase from E. coli and the deuterated standards at the same 

concentration of NAG and NEG were added to urine and the sampleswere incubated for 1 h at 

50 °C. After hydrolysis, 5 mL of n-pentane were used for LLE and the rest of the sample 

preparation before GC-MS analysis was the same as for the dialysis experiments. 
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Effect on steroid derivatization 

The effect on steroid recovery was evaluated in urines from healthy volunteers. Samples were 

fortified with NAG, NEG, and liposomes at the same concentrations as discussed above for 

the study on steroid recovery. Then, samples were splitted in three operative lines. Two lines 

consisted of only LLE, respectively with TBME and n-pentane, after glucuronide hydrolysis. 

A third one included solid phase extraction with C18 cartridges (100 mg, Varian Inc., 

Harbour City, USA) before hydrolysis. Briefly, cartridges were conditioned first with 2 ml of 

MeOH and then with 2 mL of H2O, before samples were loaded. After a washing step with  

2 mL of H2O, samples were eluted with H2O:MeOH 50:50. The eluate was evaporated to 

dryness and redissolved in 2.5 mL of phosphate buffer. After hydrolysis, LLE was performed 

with n-pentane. The organic layer was transferred to another tube for each sample, then to the 

3 experimental lines androsterone was added before derivatization and GC-MS analysis. 

 

Gas chromatography-mass spectrometry 

GC-MS analysis was performed on an Agilent Technologies 5890/5973A (Milano, Italy), in 

electron impact ionisation (70 eV), using a 17 m fused silica capillary column cross-linked 

methyl silicone, ID 0.20 mm, film thickness 0.11µm. The carrier gas was helium (flow rate:  

1 mL min−1, split ratio 1:10), and the temperature program was as follows: 180 °C (hold  

4.5 min), 3 °C  min−1 to 230 °C, 20 °C min−1 to 290 °C, 30 °C min−1 to 320 °C; the transfer 

line temperature was set at 280°C. Acquisition was carried out in selected ion monitoring. 

The diagnostic ionsm/z 432 and 435 were monitored for testosterone and d3-testosterone, 

respectively. NA and NE resulting form the hydrolysis of NAG and NEG were monitored by 

using m/z 405.m/z 408 and 409 were used for d3-norandrosterone a d4-noretiocholanolone, 

respectively. m/z 272 and m/z 434 were used for androsterone monoTMS and bisTMS. 

 

Data analysis 

All the experiments were performed at least in duplicate. For dialysis experiment, the values 

of the concentration of testosterone were calculated by comparing the peak areas of the 

detected signals for testosterone with the one of the deuterated internal standard. 

For calculation of the effect of liposome-steroid interaction on NAG and NEG recovery, ratio 

between the peak area of the detected signals for the steroids and their respective deuterated 

in samples containing liposomes was compared to the ratio in blank samples (no liposomes). 

For the calculation of the derivatization efficiency, the ratio between the peak area of the 

detected signals for the monofunctional derivatization product of androsterone 
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Although the reduction of the urinary concentration is relatively small (this meaning that 

liposome-vehiculed synthetic AAS would still be detectable by the current methods), this 

effect can have dramatic consequences on the detection of doping by endogenous AAS, 

preliminarily based on threshold concentration values or ratios, or profiling data [6]. Even 

considering that an in vitro model for a liposomal formulation has some limitations respect to 

in vivo release (e.g.: immunogenic reactions), it is evident that liposomes can realistically alter 

AAS PK, prolonging their release and pharmacological effects.  

 

Liposomes as adulterating agents (lab-oriented) 

The “lab-oriented” effect can in principle be achieved by a fraudulent addition of empty 

liposomes to a urine sample during specimen collection. Interaction of empty liposomes with 

glucuronate rather than with free steroids was therefore studied, in order to evaluate the 

magnitude of a potential “capturing power” of steroid metabolites in the collected urine 

sample.Nandrolone was selected as the model AAS to investigate such effects. Nandrolone is 

a low abundant intermediary product synthetized during testosterone conversion to estradiol 

via an alternative pathway. WADA has established a threshold of 2 ng/mL for this compound, 

to be adjusted for the urine specific gravity [7]. 

The effect of the presence of empty liposomes on nandrolone analysis, particularly on 

nandrolone metabolites extraction and derivatisation steps was evaluated. The sample 

prepraration for the screening analysis of nandrolone by GC-MS is highly standardized 

among WADA accredited laboratories and, therefore, issues related to these two important 

pre-analytical steps are commonly encountered. After fortifying Trizma™-Gly buffer with 

nandrolone metabolites norandrosterone glucuronide and noretiocholanolone glucuronide, 

liposomes were added to the sample, in order to simulate an illicit addition during specimen 

collection. Then, ultrafiltration devices were used to retain liposomes. The steroids that were 

“captured” by liposomes formed complex liposome-drug that is too big to pass through the 

pores and therefore they were not recovered from the filtrated solution. The percentage of the 

steroids that were not detected in the filtrate, by comparison with a reference blank (a spiked 

urine with no liposomes added), corresponded to the steroids that interacted with liposomes. 

Results from ultrafiltration experiments shown on Figure 2, revealed that a relevant fraction 

(up to 60%) of the nandrolone glucuronated metabolites NAG and NEG is retained by the 

molecular sieves. The effect is proportional to the amount of liposomes added to the solution, 

as shown on Figure 3, and its intensity slightly varies with varying the nature of the 

liposomes.Moreover, the sum of their amount in the retained and the filtrated fraction,  
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Conclusions: are liposomes a real threat? 

This work demonstrated that liposomes can have important implications on doping analysis. 

For the future, it is necessary to evaluate whereas it is possible for cheating athletes to get 

liposome encapsulated drugs and therefore evaluate if liposomes represent a real threat for 

sport. Several liposomal formulation containing anabolic steroids are already being marketed, 

although by non-pharmaceutical sellers, and easily available on Internet, consisting of 

transdermal gels or oral formulation with increased bioavailability [10,11]. Additionally, 

further liposomal formulations containing potential doping agent such as glucocorticoids [12], 

hemoglobin [13], or even IGF-1 gene [14], some of which currently under clinical 

development, are documented by scientific literature. 

Moreover, several other types of nanocarrier-based DDS are under development by the 

scientific community. Example of these systems are polymeric nanocarriers (e.g.: 

cyclodextrins-, polilactide-based) or vectors for use in gene therapy such as virus [15-17]. 

It is suggested to put attention on these emerging pharmaceutical formulations for slow 

release based on nanocarriers, that could represent a dangerous threat for sport, but also an 

opportunity for new analytical targets for the detection of performance enhancing drugs used. 
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