Co-administration of dietary supplements containing dehydroepiandrosterone and pregnenolone: Investigation of the impact on routine GC-C-IRMS doping control results.

Lance Brooker1, Jason Drury1, Nicole Hasick1, Amanda Idan2, David Handelsman2, Catrin Goebel1

Abstract

Products containing dehydroepiandrosterone and pregnenolone are available on the dietary supplement market. Supposed benefits include increased mood and mental function, in addition to athletic performance enhancement. While combined use would not influence the efficacy of GC-MS steroid profiling, it will severely affect routine GC-C-IRMS methods that utilise pregnanediol as the endogenous reference compound. An open, non-randomized interventional study in healthy volunteers (4 male, 4 female) was conducted to obtain urine samples for steroid analysis. For all volunteers, three spot urine samples were collected at these time points: before administration; after 3 days of 100 mg DHEA/day only; and after an additional 3 days of 100 mg DHEA/day with 200 mg PREG/day (male) or 2.5 mg Letrozole/day (female).

As expected, IRMS results for all female post-administration samples were classified as positive according to WADA TD2004EAAS criteria (i.e. $\Delta^{13}C_{ERC-TC} > 3 \%$). Three out of four male samples provided after the first administration of DHEA were also positive, however samples collected after co-administration were not due to the influence of the metabolism of pregnenolone on the ERC pregnanediol. Further steroid profiling and IRMS results are discussed in relation to the impact on routine doping control and some solutions are suggested.

Introduction

Products containing both dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one, DHEA) and pregnenolone (3β-hydroxypregn-5-en-20-one, PREG) are increasingly available on the dietary supplement market. Supposed benefits for taking this combination include increased mental function (e.g. learning and memory) in addition to assumed athletic performance enhancement [1]. With regards to doping, the use of a combined DHEA and PREG product may be to promote the supposed “backdoor pathway” of DHT production, rather than via the conventional Δ4 or Δ5 pathways [2]. While the combined use of DHEA with PREG should not influence the efficacy of GC-MS steroid profiling, it will adversely affect routine GC-C-IRMS methods that utilise pregnanediol (5β-pregnane-3α,20α-diol, PD) as the endogenous reference compound (ERC) [3-5].

Experimental

An investigation was conducted on the impact of co-administration on routine anti-doping procedures used at ASDTL for the control of endogenous anabolic androgenic steroids (EAAS). An open, non-randomized, interventional study in healthy volunteers ($n = 8$, 4 male, 4 female) was carried out with informed consent to obtain samples for steroid analysis as set out in Table 1. A total of 24 urine samples (Pre-administration/Day -3 = 8 samples, Post-administration/Day 0 and 3 = 16 samples) were collected.
For all samples, a 3 mL urine aliquot was prepared for GC-MS steroid profiling - internal standards were added before enzymatic hydrolysis, solid phase extraction and derivatisation with TMSI reagent (MSTFA/NH₄I/ethanethiol) [6]. A Shimadzu GCMS-QP2010 Plus gas chromatograph mass spectrometer utilizing a HP Ultra-1 column (17 m x 0.20 mm i.d., 0.11 μm film thickness) in full scan mode (m/z 50 - 700) with single point calibration was used to estimate endogenous steroid metabolite concentrations. Subsequently, appropriate volumes of urine (5 - 20 mL) were prepared for GC-C-IRMS using previously published methodology [7]. Aliquots of urine were centrifuged before solid phase extraction on a C18 cartridge. The methanolic extract was evaporated then reconstituted in phosphate buffer for enzymatic hydrolysis. Liberated steroids were isolated by liquid-liquid extraction and acetylated before purification by high performance liquid chromatography. Three fractions were collected: F1 - etiocholanolone acetate (Et-Ac) and androsterone acetate (A-Ac), F2 - 5β-androstanediol diacetate (βαβ-Ac), and 5α-androstanediol diacetate (ααβ-Ac), and F3 - 5β-pregnanediol diacetate (PD-Ac). Only F1 and F3 were processed owing to the presence of interfering pregnenolone metabolites in male Day 3 samples. After evaporation and reconstitution in cyclohexane, fractions were assessed by GC-MS to ascertain peak purity and to estimate analyte concentration, thereby allowing appropriate dilution for IRMS analysis. GC-C-IRMS instrumental conditions were as previously published [8].

Table 1: Study protocol

<table>
<thead>
<tr>
<th>Visit</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Day</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Day of week</td>
<td>Fri</td>
<td>Sat</td>
<td>Sun</td>
</tr>
<tr>
<td>Clinical review</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DHEA (100 mg)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Men only - Pregnenolone (200 mg)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Women only - Letrozole (2.5 mg)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hematology & biochemistry</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Blood & urine sample</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Results and Discussion

GC-MS Steroid Profiling: Highly elevated EAAS metabolite concentrations were observed in post-administration samples. 7/16 exceeded one or more WADA TD2004EAAS criteria for initiating investigation with GC-C-IRMS [9]. Using a population reference limits (99% RL) approach would have yielded a further 4 samples for IRMS [10].

GC-C-IRMS Analysis: δ¹³C values for Et, A and PD were obtained after correction for the added acetate moieties [11]. Pre- and post-administration samples were easily distinguished due to the marked depletion of δ¹³C for Et and A (Figure 1).

Δ¹³C values were calculated against PD (Figure 2). All pre-administration samples were less than the ASDTL decision limit of 4 ‰ (i.e. negative). Seven out of eight Day 0 samples were positive for one or more markers. Likewise, all female (Day 3, NO PREG) post-administration samples (4/4) were positive.

In contrast, all male (Day 3, PREG) post-administration samples were calculated negative for both markers. This was because the δ¹³C of the administered PREG matched closely to that of the administered DHEA (−30 ‰). Therefore the calculated Δ¹³C_PD-Et was reduced below 4 ‰, even approaching −4 ‰ for some measured Δ¹³C_PD-Et. Because the dosage of PREG was very large, the PD did not suffer from any endogenous dilution, leading to a mean Δ¹³C_PD after PREG administration (n = 4) of −30.2 ± 0.5 ‰. In contrast, Et was recorded at somewhat less depleted values (−26.8 ± 0.6 ‰) for those samples, perhaps due to endogenous dilution or metabolic fractionation, leading to the unusual Δ¹³C_PD-Et. However, for three out of four of these samples the corrected androsterone δ¹³C was less than −28 ‰, clearly indicating the administration of an exogenous steroid.
Figure 1: Pre (triangle) & Post-admin (square & circle) $\delta^{13}C$ values for Et & A. Note: “white, with shadow” - No A values able to be determined for Subject 6.

Figure 2: Pre (triangle) & Post-admin (square & circle) $\Delta^{13}C$ values for Et & A relative to PD. Note: “white, with shadow” - No A values able to be determined for Subject 6.
Conclusions

It was demonstrated that PREG could be used as a masking agent for the confirmation of EAAS abuse, as urine samples collected after the intake of DHEA did not fulfil WADA criteria for positivity when utilising PD as the ERC. However, the extremely large Et, A and PD concentrations found in prepared extracts clearly indicate a co-administration of DHEA with PREG, which is confirmed by the depleted δ^{13}C values found for PD. To avoid such analytical problems during doping control procedures, an IRMS methodology that utilises multiple ERC from metabolically separate pathways should be used. As suggested previously, alternative ERC to PD may include 5α-androst-16-en-3β-ol [3,4] or 11β-hydroxyandosterone [5].

References

Drug Test. Analysis, 1, 587-595

Acknowledgements

The authors gratefully acknowledge the assistance of the eight subjects who volunteered to be part of the study.